首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2884篇
  免费   171篇
  国内免费   33篇
测绘学   119篇
大气科学   266篇
地球物理   638篇
地质学   1085篇
海洋学   247篇
天文学   434篇
综合类   13篇
自然地理   286篇
  2023年   15篇
  2022年   23篇
  2021年   65篇
  2020年   91篇
  2019年   75篇
  2018年   94篇
  2017年   111篇
  2016年   134篇
  2015年   100篇
  2014年   125篇
  2013年   171篇
  2012年   133篇
  2011年   187篇
  2010年   155篇
  2009年   169篇
  2008年   143篇
  2007年   111篇
  2006年   102篇
  2005年   106篇
  2004年   87篇
  2003年   90篇
  2002年   79篇
  2001年   53篇
  2000年   58篇
  1999年   36篇
  1998年   33篇
  1997年   38篇
  1996年   33篇
  1995年   35篇
  1994年   19篇
  1993年   19篇
  1992年   26篇
  1991年   21篇
  1990年   27篇
  1989年   14篇
  1988年   15篇
  1987年   19篇
  1985年   23篇
  1984年   29篇
  1983年   19篇
  1982年   19篇
  1981年   26篇
  1980年   19篇
  1979年   17篇
  1978年   17篇
  1977年   14篇
  1976年   12篇
  1975年   17篇
  1974年   18篇
  1973年   8篇
排序方式: 共有3088条查询结果,搜索用时 260 毫秒
121.
122.
123.
124.
125.
Introductory courses in Geographic Information Science (GIS) expose students to the concepts and practices necessary for future academic and professional use of GIS tools. Traditional GIS courses balance lectures in the theories of GIS with pre‐built and pre‐packaged lab activities to learn the practices of GIS. This article presents a case study of an experimental introductory course in which students conducted novel, independent project‐based group research under the supervision of graduate or advanced undergraduate students enrolled in the course, culminating in a class presentation and publication quality paper. Surveys and interviews indicated that students reacted more positively to project‐based group research than to traditional activities. Students felt the projects better prepared them for ‘real world’ applications of GIS, and recommend project‐based group research in other GIS coursework. Additionally, our findings indicate that students appreciate interactions with peers of varying skill levels and experiences, as these broaden their capabilities to work with other GIS users.  相似文献   
126.
Territorial control is central to the understanding of violent armed conflicts, yet reliable and valid measures of this concept do not exist. We argue that geospatial analysis provides an important perspective to measure the concept. In particular, measuring territorial control can be seen as an application of calculating service areas around points of control. The modeling challenge is acute for areas with limited road infrastructure, where no complete network is available to perform the analysis, and movements largely occur off road. We present a new geospatial approach that applies network analysis on a hybrid transportation network with both actual road data and hexagon‐fishnet‐based artificial road data representing on‐road and off‐road movements, respectively. Movement speed or restriction can be readily adjusted using various input data. Simulating off‐road movement with hexagon‐fishnet‐based artificial road data has a number of advantages including scalability to small or large study areas and flexibility to allow all‐directional travel. We apply this method to measuring territorial control of armed groups in Sub‐Saharan Africa where inferior transport infrastructure is the norm. Based on the Uppsala Conflict Data Program's (UCDP) Georeferenced Event Data (GED) as well as spatial data on terrain, population locations, and limited transportation networks, we enhance the delineation of the specific areas directly controlled by each warring party during civil wars within a given travel time.  相似文献   
127.
128.
129.
The spread of human activities into the deep sea may pose a high risk to benthic communities and affect ecosystem integrity. The deep sea is characterized by physical and biological heterogeneity and different habitat types are likely to differ in their vulnerability to anthropogenic impacts. However, across‐habitat comparisons are rare, and no comprehensive ecological risk assessment has yet been developed. To address this gap in our knowledge, we compared macro‐infaunal community structure in four habitats (slope, canyons, seamounts and methane seeps) at depths between 700 and 1500 m in the Hikurangi Margin and Bay of Plenty regions off New Zealand. The most striking contrast in community structure was between the two study regions, due to an order of magnitude difference in macro‐infaunal abundance that we believe was caused by differences in surface productivity and food availability at the sea bed. We found differences in structural and functional attributes of macro‐infaunal communities among some habitats in the Hikurangi Margin (slope, canyon and seep), but not in the Bay of Plenty. We posit that differences between canyon and slope communities on the Hikurangi Margin are due to enhanced food availability inside canyons compared with adjacent slope habitats. Seep communities were characterized by elevated abundance of both symbiont‐bearing and heterotrophic taxa, and were the most distinct, and variable, among the habitats that we considered on the Hikurangi Margin. Communities of seamounts were not distinct from slope or canyon communities on the Hikurangi Margin, probably reflecting similar environmental conditions in these habitats. The communities of deep‐sea canyon and seep habitats on the Hikurangi Margin were sufficiently dissimilar from each other and from slope habitats to warrant separate management consideration. By contrast, the low dissimilarity between communities of canyon and slope habitats in the Bay of Plenty suggests that habitat‐based management is not required in this region, for macro‐infauna at least. Although the two study regions share similar species pools, populations of the Hikurangi Margin region may be less vulnerable than the sparser populations of the Bay of Plenty due to the higher availability of potential colonizers and faster population growth. Thus regions, and habitats in some regions, should be subject to separate ecological risk assessment to help identify the key risks and consequences of human activities, and to inform options for reducing or mitigating impacts.  相似文献   
130.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号